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AAbbssttrraacctt  
Accurate localization of buildings is an important task in urban planning and development, 
impacting areas such as emergency response, navigation, and augmented reality. This research 
presents several advancements in urban building mapping using moving smartphone camera 
images, crucial for maintaining precise geographic information systems. We created a 
comprehensive dataset, comprising more than 7,000 instances of diverse building types, including 
low-rise residence, apartment, high-rise residence for the detection and classification of urban 
buildings. Utilizing YOLOv8, a highly accurate building detection model was developed, 
achieving an mAP of 76%. This work introduces an innovative integration of AI algorithms with 
geospatial data and photogrammetry techniques to accurately localize buildings from smartphone 
camera images. The precision of our building localization method is evaluated, with an error 
margin of up to 5.22 meters. Moreover, by identifying and analyzing the sources of errors in the 
localization process, this study provides insights into potential areas for improvement, setting the 
stage for future enhancements in urban mapping technologies. As well as providing support for 
urban planning and emergency services, we believe that this research has implications for 
delivery services, disaster management, and preservation efforts, indicating a significant impact 
on both societal and technological domains. 
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1  Introduction 
Accurately building localization is an important 
aspect of urban planning and development. It 
holds importance in societal and technological 
domains, including emergency response, urban 
planning, navigation systems and augmented 
reality applications. Given the growth of areas, 
efficiently mapping and updating building 
coordinates is crucial, for maintaining precise 
geographic information systems (GIS) that are 

utilized by governments, businesses and 
individuals. 

The building locations data not only supports 
urban planning but also aids emergency services 
in responding promptly. Additionally it plays a 
role, in the development of city initiatives. 
Furthermore precise building maps can improve 
delivery services, assist in disaster management 
efforts and contribute to preservation endeavors. 

Recent studies have primarily focused on 
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using static surveillance cameras or aerial 
imagery for urban mapping. However, these 
methods are often constrained by the limited 
field of view and the inability to capture real-time 
changes in urban landscapes. For instance, 
aerial imagery based studies, like the one 
conducted in [1], provided broad overviews but 
were limited in terms of real-time data 
acquisition. 

To overcome these limitations, our research 
presents a novel approach that utilizes moving 
smartphone cameras, leveraging the ubiquity 
and mobility of these devices. This method aligns 
with the recent trend of using moving cameras 
for dynamic data acquisition as seen in studies 
such as [2], where vehicle-mounted cameras 
were used for traffic flow analysis. 
This research makes several key contributions to 
the field of urban building mapping: 
• AA  LLaarrggee--SSccaallee  BBuuiillddiinngg  DDeetteeccttiioonn  DDaattaasseett: We 

developed a comprehensive dataset consisting 
of more than 7,000 instances of buildings in 
Tokyo metropolitan area, focused on three 
distinct types of buildings: low-rise residence, 
apartment, and high-rise residence. 

• BBuuiillddiinngg  DDeetteeccttiioonn  MMooddeell: Utilizing the 
advanced capabilities of YOLOv8, we trained a 
model that achieves a 76% mAP in building 
detection. 

• IInntteeggrraattiioonn  ooff  AAII  wwiitthh  GGeeoossppaattiiaall  aanndd  
PPhhoottooggrraammmmeettrryy  TTeecchhnniiqquueess: Our approach 
combines AI algorithms with geospatial data 

and photogrammetry to localize buildings 
accurately. This methodology represents an 
advancement in the precision of urban 
mapping technologies. 

• EEvvaalluuaattiioonn  ooff  LLooccaalliizzaattiioonn  AAccccuurraaccyy: The 
accuracy of our building localization method is 
rigorously evaluated, showing an error margin 
of up to 5.22 meters, which is crucial for 
understanding the reliability and potential 
applications of our approach. 

• EErrrroorr  SSoouurrcceess  iinn  LLooccaalliizzaattiioonn: By analyzing 
the sources of errors in our localization process, 
we provide insights into potential areas for 
improvement and pave the way for future 
enhancements in urban mapping techniques. 
Our methodology not only allows for real-time 

urban mapping but also addresses some of the 
limitations faced by previous research. Unlike 
static camera methods, our approach captures 
the dynamic changes in urban environments. 
Moreover, by analyzing and identifying the 
sources of errors in building localization, this 
study provides insights for future enhancements 
in urban mapping technologies. 

2  Methodology 
We show the overall framework for building 
localization in Figure 1, which has components, 
such as building detection, building distance 
estimation, building angle estimation and 
building localization. In the next few sub-sections, 
we describe each component in detail.

 

 
FFiigg..  11: Illustration of building detection and localization using a moving smartphone camera.
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FFiigg..  11: Illustration of building detection and localization using a moving smartphone camera.

2.1  Building Detection Dataset 
For the localization of individual buildings, it is 
necessary to detect them first. There are several 
ways of building detection, such as using object 
detection method, instance segmentation, 
semantic segmentation and panoptic 
segmentation, etc. Out of all these methods, we 
selected, object detection method to detect 
buildings as rectangular bounding boxes. We 
select this method due to the simplicity of the 
development of the dataset annotation and 

resources required for training and computation. 
We carry out a driving experiment in Tokyo 

metropolitan area and record videos using 
smartphone mounted on the dashboard of a car. 
We manually annotate buildings in the extracted 
frames from the video by drawing rectangular 
bounding boxes and categorize them into three 
categories based on their height, such as low-rise 
buildings (up to four floors), mid-rise building 
(four to fifteen floors) and high-rise buildings 
(above fifteen floors), as shown in Table 1. 

TTaabbllee  11: Building categories for annotation and approximate height characteristics 

TTyyppee  ooff  BBuuiillddiinngg NNuummbbeerr  ooff  SSttoorriieess  ((aapppprrooxx..)) EExxaammppllee  iimmaaggee 

Low-rise residence Up to four 

 

Apartment Five to Fifteen 

 

High-rise residence Above twelve 

 

 

(a) Example annotation of three classes of buildings (b) Distribution of building classes in the training set 
FFiigg..  22: Building annotation example and distribution in the training dataset

土地総合研究 2024年冬号 47



In total, we annotate 7,174 buildings for 
training and 304 buildings for validation. An 
example annotation along with the distribution 
of the three types of buildings are shown in 
Figure 2. We use this dataset for training 
building detection model. 

2.2  Training Building Detection Model 
We use the building detection dataset consisting 
of 7,147 buildings to train an object detection 
network YOLOv8 [3]. YOLOv8 is the latest 
addition to the YOLO (You Only Look Once) 
series of real-time object detectors, offering 
remarkable performance. For improved feature 
extraction and object detection performance, 
YOLOv8 features advanced backbone and neck 
architectures. 
In contrast to anchor-based approaches, YOLOv8 

utilizes a split Ultralytics head that is anchorfree, 
enhancing detection accuracy and efficiency. It 
optimizes the accuracy-speed tradeoff, ensuring 
suitability for real-time object detection in 
diverse areas. YOLOv8 also offers a variety of 
pre-trained models, catering to different tasks 
and performance requirements. 

YOLOv8l, one of the larger models in the 
YOLOv8 series, is particularly noteworthy for its 
performance metrics. It achieves a balance 
between speed and accuracy, standing out as a 
preferred choice for real-time detection tasks. We 
use YOLOv8l model using the initial pre-trained 
weights on the COCO dataset [4] to train the 
building detection model for 100 epochs and 
select the best weights on the validation set for 
further calculations. The hyperparameters used 
during training are shown in Table 2.

TTaabbllee  22: Top 5 Hyperparameters for Training YOLOv8 

HHyyppeerrppaarraammeetteerr VVaalluuee DDeettaaiill 

Initial Learning Rate (lr0) 0.01 
Sets the starting learning rate, crucial for the early stages of the 

training process. 

Weight Decay 0.0005 
Helps prevent overfitting by penalizing large weights, important 

for model regularization. 

Momentum 0.937 
Accelerates SGD in the right direction, critical for faster and 

more stable convergence. 

Nominal Batch Size (nbs) 64 
Influences the speed and stability of the training process, as well 

as the generalization ability of the model. 

Mosaic Augmentation (mosaic) 1.0 
Data augmentation technique, enhances the model’s ability to 

generalize and recognize objects in various scenarios. 
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2.3  Building Localization 
Building localization refers to the estimation of 
latitude and longitude of the detected buildings 
from the smartphone camera images. To 
calculate the GPS coordinates of identified 
buildings from the known GPS location of the ego 
vehicle, two key parameters are essential: the 
distance 𝒟𝒟  to the detected buildings from the 
ego vehicle, and the bearing 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟 . This bearing 
𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟  denotes the direction in which we must 
travel the distance 𝒟𝒟  from the ego vehicle to 
arrive at the GPS location of the buildings. 𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟  
is obtained by considering the bearing of ego 
vehicle 𝛽𝛽𝑓𝑓𝑓𝑓𝑓𝑓  and the angle the detected vehicles 
make with respect to the smartphone camera or 
ego vehicle. In the next three sub-sections, we 
explain the estimation of building, angle 
estimation and localization of building using the 
GPS position of the ego vehicle. 

2.3.1 Building Distance Estimation 
To calculate the distance to detected buildings, 
we employ a photogrammetry method proposed 
in research conducted by Kumar et al. [2, 5]. This 
technique is based on the principle that the ratio 
of an object’s actual size to its size in an image is 
equal to the ratio of the object’s distance from the 
camera sensor to the camera’s focal length. This 
relationship is mathematically expressed as:

𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟
𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑟𝑟

= 𝐷𝐷
𝑓𝑓 (1) 

Here, 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟  represents the real height of 
the building, 𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑟𝑟  is the building’s height in 
the image, 𝐷𝐷  denotes the distance to the 
building, and 𝑓𝑓 is the focal length of the camera. 
We focus on measuring the height of buildings 
instead of their width due to the consistent 
nature of height in varying perspectives and 
distances in images. Buildings are categorized 
into types such as low rise, mid rise, and high rise, 

each with a predefined average height, as 
explained before. 

In digital cameras, such as smartphones, 
object dimensions are typically measured in 
pixels. This pixel measurement can be converted 

to metric units using the formula 𝐻𝐻𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑟𝑟 =
μ×𝐻𝐻𝑝𝑝𝑝𝑝
𝐼𝐼𝐻𝐻

, 

where 𝜇𝜇 is the sensor height in millimeters, 𝐻𝐻𝑝𝑝𝑝𝑝  

is the object’s height in pixels, and 𝐼𝐼𝐻𝐻  is the 
image height in pixels. By substituting these 
values into Equation 1 and rearranging, we 
obtain the distance to the building in meters: 

𝒟𝒟 = 𝑓𝑓 × 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟 × 𝐼𝐼𝐻𝐻
𝐻𝐻𝑝𝑝𝑝𝑝 × μ (2) 

We consider different Hactual for different 
categories of buildings, as shown in Table 3. It 
should be noted that heights of building is not 
always fixed and because of this there might be 
some error in the calculated distance 𝒟𝒟 . 
However, the estimated distance does not have to 
be precise as building dimensions are also large, 
which gives extra tolerance for position 
estimation considering the error in the distance 
due to fixed height of the buildings. 

TTaabbllee  33: Reference building heights 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟 

BBuuiillddiinngg  CCllaassss BBuuiillddiinngg  HHeeiigghhtt  𝑯𝑯𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 

Low-rise (low-rise residence) 30 meters 

Mid-rise (apartment) 50 meters 

High-rise (high-rise residence) 80 meters 

2.3.2 Building Angle Estimation 
Angle estimation involves calculating the angle 
between the direction of the vehicle (ego vehicle) 
and the detected building, using principles of 
photogrammetry, camera calibration data, and 
geometric calculations. We calibrate the camera 
in advance using a chessboard pattern. The 
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camera calibration coefficients include the 
camera matrix and distortion coefficients, 
denoted as 𝐾𝐾. These coefficients are critical for 
correcting lens distortion and transforming 2D 
image points into 3D world points using the 
inverse of the camera matrix, 𝐾𝐾−1. 

For each building detected in the frame, its 
central pixel coordinates (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦)  are 
determined as the center of the bounding boxes. 
Using the inverse camera matrix 𝐾𝐾−1 , we 
transform these coordinates to a normalized 
camera coordinate system: 

𝑅𝑅𝐼𝐼 =  𝐾𝐾−1 ⋅ [
𝑐𝑐𝑥𝑥
𝑐𝑐𝑦𝑦
1

] (3) 

This produces a ray RI originating from the 
camera center and intersecting the detected 
building. The reference direction 𝑅𝑅𝐶𝐶 , 
corresponding to the camera’s optical axis, is 
determined using 𝐾𝐾−1 and the image center. The 
cosine of the angle between 𝑅𝑅𝐼𝐼  and 𝑅𝑅𝐶𝐶  is 
calculated using their dot product: 

cos(θ) = 𝑅𝑅𝐼𝐼 ⋅ 𝑅𝑅𝐶𝐶
‖𝑅𝑅𝐼𝐼‖‖𝑅𝑅𝐶𝐶‖

(4) 

To ascertain the precise direction towards the 
detected building, the angle is determined using 
the cross product of vectors 𝑅𝑅𝐶𝐶  and 𝑅𝑅𝐼𝐼. The cross 
product helps in identifying the orientation of 𝑅𝑅𝐼𝐼  

relative to 𝑅𝑅𝐶𝐶 . The Z-component of the cross 
product, denoted as 𝑣𝑣𝑧𝑧⃗⃗  ⃗ , indicates whether 𝑅𝑅𝐼𝐼 
lies to the left or right of 𝑅𝑅𝐶𝐶. This is essential for 
determining the correct sign of the angle. The 
equation for the cross product is given by: 

𝑣𝑣 = 𝑅𝑅𝐶𝐶 × 𝑅𝑅𝐼𝐼 (5) 
Where 𝑣𝑣  represents the vector resulting 

from the cross product. Based on the sign of the 
Zcomponent of 𝑣𝑣 , the angle 𝜃𝜃  is adjusted 
accordingly: 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = {−𝜃𝜃     𝑖𝑖𝑖𝑖 𝑣𝑣𝑧𝑧⃗⃗  ⃗ <  0
𝜃𝜃      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 (6) 

 

2.3.3 Building Position Estimation 
The relative bearing to the building is calculated 
by adjusting the detected angle 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  with 
the ego vehicle’s forward bearing 𝛽𝛽𝑓𝑓𝑓𝑓𝑐𝑐: 

𝛽𝛽𝑐𝑐𝑐𝑐𝑟𝑟 =  (𝛽𝛽𝑓𝑓𝑓𝑓𝑐𝑐 − 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) mod 360 (7) 
This relative bearing 𝛽𝛽𝑐𝑐𝑐𝑐𝑟𝑟  is used along with 

the known distance 𝐷𝐷  to compute the GPS 
position of the building. 

The GPS position of the building 
(φbldg𝑖𝑖 ,  λbldg𝑖𝑖)  is calculated using the geodesic 
method [6] by considering the current GPS 
position of the ego vehicle and moving a distance 
𝒟𝒟 at bearing 𝛽𝛽𝑐𝑐𝑐𝑐𝑟𝑟. 

2.4  Localization Error Evaluation 
This section outlines the methodology employed 
for estimating the error in the estimated building 
position (φbldg𝑖𝑖 ,  λbldg𝑖𝑖). The error is estimated as 
follows: 

 For each estimated position (φbldg𝑖𝑖 ,  λbldg𝑖𝑖), its 
location is first verified on a map. 

 If the estimated position falls directly on the 
building, the error is considered to be zero 
meters, indicating a precise estimation. 

 If the estimated position is outside the 
building’s periphery, the nearest point on the 
building’s outline is identified. 

 The error is then calculated as the geodesic 
distance [7] between the estimated position 

(φbldg𝑖𝑖 ,  λbldg𝑖𝑖)  and the nearest point on the 
building (φbldg_boundary𝑖𝑖 ,  λbldg_boundary𝑖𝑖) . This 
distance is computed on the Earth’s ellipsoidal 
surface, which offers a more accurate 
representation than a simple spherical model. 
Mathematically, the error for the 𝑖𝑖𝑐𝑐ℎ  building 𝔼𝔼𝑖𝑖  

is given by: 
𝔼𝔼𝑖𝑖

= 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈_𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝒅𝒅𝒅𝒅𝒈𝒈𝒈𝒈 ((φbldg𝑖𝑖,  λbldg𝑖𝑖), (φbldg_boundary𝑖𝑖,  λbldg_boundary𝑖𝑖)) 

The mean error (�̅�𝔼 ) over all 𝑛𝑛  samples is 
calculated as: 
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detected building, the angle is determined using 
the cross product of vectors 𝑅𝑅𝐶𝐶  and 𝑅𝑅𝐼𝐼. The cross 
product helps in identifying the orientation of 𝑅𝑅𝐼𝐼  

relative to 𝑅𝑅𝐶𝐶 . The Z-component of the cross 
product, denoted as 𝑣𝑣𝑧𝑧⃗⃗  ⃗ , indicates whether 𝑅𝑅𝐼𝐼 
lies to the left or right of 𝑅𝑅𝐶𝐶. This is essential for 
determining the correct sign of the angle. The 
equation for the cross product is given by: 

𝑣𝑣 = 𝑅𝑅𝐶𝐶 × 𝑅𝑅𝐼𝐼 (5) 
Where 𝑣𝑣  represents the vector resulting 

from the cross product. Based on the sign of the 
Zcomponent of 𝑣𝑣 , the angle 𝜃𝜃  is adjusted 
accordingly: 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = {−𝜃𝜃     𝑖𝑖𝑖𝑖 𝑣𝑣𝑧𝑧⃗⃗  ⃗ <  0
𝜃𝜃      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 (6) 

 

2.3.3 Building Position Estimation 
The relative bearing to the building is calculated 
by adjusting the detected angle 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  with 
the ego vehicle’s forward bearing 𝛽𝛽𝑓𝑓𝑓𝑓𝑐𝑐: 

𝛽𝛽𝑐𝑐𝑐𝑐𝑟𝑟 =  (𝛽𝛽𝑓𝑓𝑓𝑓𝑐𝑐 − 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) mod 360 (7) 
This relative bearing 𝛽𝛽𝑐𝑐𝑐𝑐𝑟𝑟  is used along with 

the known distance 𝐷𝐷  to compute the GPS 
position of the building. 

The GPS position of the building 
(φbldg𝑖𝑖 ,  λbldg𝑖𝑖)  is calculated using the geodesic 
method [6] by considering the current GPS 
position of the ego vehicle and moving a distance 
𝒟𝒟 at bearing 𝛽𝛽𝑐𝑐𝑐𝑐𝑟𝑟. 

2.4  Localization Error Evaluation 
This section outlines the methodology employed 
for estimating the error in the estimated building 
position (φbldg𝑖𝑖 ,  λbldg𝑖𝑖). The error is estimated as 
follows: 

 For each estimated position (φbldg𝑖𝑖 ,  λbldg𝑖𝑖), its 
location is first verified on a map. 

 If the estimated position falls directly on the 
building, the error is considered to be zero 
meters, indicating a precise estimation. 

 If the estimated position is outside the 
building’s periphery, the nearest point on the 
building’s outline is identified. 

 The error is then calculated as the geodesic 
distance [7] between the estimated position 

(φbldg𝑖𝑖 ,  λbldg𝑖𝑖)  and the nearest point on the 
building (φbldg_boundary𝑖𝑖 ,  λbldg_boundary𝑖𝑖) . This 
distance is computed on the Earth’s ellipsoidal 
surface, which offers a more accurate 
representation than a simple spherical model. 
Mathematically, the error for the 𝑖𝑖𝑐𝑐ℎ  building 𝔼𝔼𝑖𝑖  

is given by: 
𝔼𝔼𝑖𝑖

= 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈_𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝒅𝒅𝒅𝒅𝒈𝒈𝒈𝒈 ((φbldg𝑖𝑖,  λbldg𝑖𝑖), (φbldg_boundary𝑖𝑖,  λbldg_boundary𝑖𝑖)) 

The mean error (�̅�𝔼 ) over all 𝑛𝑛  samples is 
calculated as: 

�̅�𝔼 = 1
𝑛𝑛∑𝔼𝔼𝑖𝑖

𝑛𝑛

𝑖𝑖=1
(8) 

3  Results 
3.1  Building Detection 
We evaluate the accuracy of the YOLOv8 model 
trained on the validation set of the building 
detection dataset. We present the results of 
precision, recall and mAP in Figure 3. From 
Figure 3, we notice that all three metrics 
precision, recall and mAP increases as the 
number of epochs increases and reaches a 
plateau after 60 epochs. We obtain the highest 
mAP of 0.762 at 85 epoch and use this weight for 
further detection of buildings. 
 
3.2  Building Localization 
In Table 4, we show the localization of detected 
building on the map along with car’s GPS 
location (shown using blue marker). From 

different examples in Table 4, we notice that we 
can estimate location of buildings accurately for 
various types of buildings, such as mansion, 
tower mansions, etc. 

From the results in Table 4, we can see that 
in every frame, several buildings can be detected. 
However, we only consider the nearest buildings 
(shown using green bounding boxes) for 
localization within a threshold distance of 50 
meters. 

We evaluate the error (using Equation 8) in 
localization using 60 samples of buildings from a 
test drive in the Tokyo metropolitan area and 
present result in Figure 4. From the histogram 
presented in Figure 4a, we notice that in several 
instances the error is 0 meters because the 
localized position lies on/inside the periphery of 
the detected building. We obtain an overall error 
of 5.22 meters. 

 

 
FFiigg..  33: Progression of mAP 50, Precision, and Recall over different epochs with highlighted maximum 
mAP 50. 
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TTaabbllee  44: Car’s GPS position, detected building location and visualization on map. Image courtesy of 
USGS Earth Explorer. © 2024/01/21. 
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 Histogram of error values in building localization with mean error 

 

 Localized position visualization on map. Green bars show the ground truth while blue barsrepresent 

predicted position. Map data: © OpenStreetMap contributors, CC-BY-SA 

FFiigg..  44: Histogram of error values in building localization along with estimated and ground truth 
building GPS position visualized on map for a sample driving experiment 
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In Figure 4b, we also present visualization of 
predicted and ground truth positions of buildings. 
To avoid crowding of points for closer buildings or 
when the same building is localized from 
different angles, we consider a distance threshold 
to only consider a small sample. 

4  Discussions 
In the results for building detection, we observed 
that the mean Average Precision (mAP) value for 
building detection is 0.762. This indicates that 
we can detect buildings with high accuracy. It 
should be noted that building types can vary in 
shape and size, even within the same category, 
such as midrise buildings (mansions), which 
leads to some errors in the classification. In 
addition to variations within the same category, 
the appearance of buildings also changes as the 
ego vehicle approaches them. For example, a 
tower mansion is detected and categorized 
correctly when viewed from a distance. However, 
when the ego vehicle is close to the building, the 
full view is not visible, and it may be 
misclassified as a mansion. Misclassification of 
buildings does not significantly affect the 
accuracy of localization since this categorization 
is mainly used for distance estimation, as 
indicated by the real height of the building 
(𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) in Equation 2. The reference heights of 
mansions and tower mansions do not vary 
significantly, as shown in Table 3. 

From the building localization results, we find 
that buildings can be localized accurately. In 
some cases, we notice some error in localization, 

such as the localized position being either 
overpasses the detected building or lies in front 
of the building. Such phenomenon occur mainly 
due to two reasons. The first reason is the fixed 
height consideration 𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  in Equation 2. Such 
problems could be fixed using depth estimation 
techniques that does not require consideration of 
object dependent parameters, such as using 
Depth Anything [8] at the expense of 
computational cost. The second reason is also due 
to error inherent in the ego vehicle GPS location. 
The smartphone’GPS sensor may have 
positioning error of a few meters, especially in 
the dense areas due to factors, such as multipath 
error, signal blockage, etc. [9]. The initial error in 
the source may lead to error propagation in the 
estimated distance. 

Building position estimation requires the 
forward bearing of the ego vehicle, which is 
calculated using GPS position at two timestamps 
𝑡𝑡 and 𝑡𝑡 + 1. When the vehicle is moving in the 
forward direction, the GPS positions at two 
timestamps lie in the direction of the vehicle 
movement. The problem arises when the vehicle 
is at rest. In such cases, the recorded positions 
may not be in the direction of the movement and 
may lie laterally to the car direction. This causes 
the change in the direction of bearing leading to 
incorrect localization, as illustrated in Figure 5. 
In such cases, it is necessary to consider either 
moving average of the past GPS traces or 
consider the bearing of the vehicle only when the 
vehicle is moving. 
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FFiigg..  55: Bearing direction estimation when the car is moving (a) and when it is at rest (b) and (c). When 
the vehicle is at rest, the GPS position of the smartphone at two different times may lie lateral 
(sideways) to the direction of the vehicle, as shown in b) and c). 

5  Conclusions 
In this research, we introduce a framework for 
the accurate localization of urban buildings using 
moving smartphone cameras. We develop a 
building detection dataset containing more than 
7,000 instances of various types of buildings. A 
key component of our methodology was the 
training of the YOLOv8 model, which 
demonstrated high accuracy in detecting a 
diverse range of building types, such as low-rise 
residence, apartment, etc. with an mAP of 76%. 
We integrate the building detection results with 
distance and angle estimation and estimate 
building location by considering ego vehicle GPS 
position with distance and bearing of the 
detected vehicles. Using our localization method, 
we achieve accuracy of 5.22 meters. In addition, 
our research examines the causes of localization 
errors, providing valuable insights for future 
improvements. We identified challenges such as 
the fixed height consideration in distance 
estimation and the inherent inaccuracies in 
smartphone GPS data. Addressing these issues 

will be crucial for enhancing the accuracy of 
urban mapping technologies. 

Our proposed method exemplifies the 
potential of integrating AI algorithms with 
photogrammetry and geospatial data, especially 
when leveraging the mobility and ubiquity of 
smartphones. This technique not only enables 
dynamic mapping of urban landscapes but also 
addresses the limitations of static observational 
methods. 

The implications of our work extend beyond 
the realm of urban planning and development. 
The precise localization of buildings can 
significantly benefit emergency response systems, 
navigation applications, and augmented reality 
experiences. Additionally, the potential 
applications in delivery services, disaster 
management, and preservation efforts highlight 
the societal impact of this research. While the 
current results are promising, ongoing 
advancements in AI and geospatial technologies 
are expected to further refine and expand the 
capabilities of urban mapping methods in the 
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future. 
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